Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The interfacial instability in a two-phase mixing layers between parallel gas and liquid streams is important to two-phase atomization. Depending on the inflow conditions and fluid properties, interfacial instability can be convective or absolute. The goal of the present study is to investigate the impact of gas viscosity on the interfacial instability. Both interface-resolved simulations and linear stability analysis (LSA) have been conducted. In LSA, the Orr–Sommerfeld equation is solved to analyze the spatio-temporal viscous modes. When the gas viscosity decreases, the Reynold number (Re) increases accordingly. The LSA demonstrates that when Re is higher than a critical threshold, the instability transitions from the absolute to the convective (A/C) regimes. Such a Re-induced A/C transition is also observed in the numerical simulations, though the critical Re observed in simulations is significantly lower than that predicted by LSA. The LSA results indicate that the temporal growth rate decreases with Re. When the growth rate reaches zero, the A/C transition will occur. The Re-induced A/C transition is observed in both confined and unconfined mixing layers and also in cases with low and high gas-to-liquid density ratios. In the transition from typical absolute and convective regimes, a weak absolute regime is identified in the simulations, for which the spectrograms show both the absolute and convective modes. The dominant frequency in the weak absolute regime can be influenced by the perturbation introduced at the inlet. The simulation results also show that the wave propagation speed can vary in space. In the absolute instability regime, the wave propagation speed agrees well with the absolute mode celerity near the inlet and increases to the Dimotakis speed further downstream.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Flow-blurring atomization is an innovative twin-fluid atomization approach that has demonstrated superior effectiveness in producing fine sprays compared to traditional airblast atomization methods. In flow-blurring atomizers, the high-speed gas flow is directed perpendicular to the liquid jet. Under specific geometric and physical conditions, the gas penetrates back into the liquid nozzle, resulting in a highly unsteady bubbly two-phase mixing zone. Despite the remarkable atomization performance of flow-blurring atomizers, the underlying dynamics of the two-phase flows and breakup mechanisms within the liquid nozzle remain poorly understood, primarily due to the challenges in experimental measurements of flow details. In this study, detailed interface-resolved numerical simulations are conducted to investigate the two-phase flows generated by a planar flow-blurring atomizer. By varying key dimensionless parameters, including the dynamic-pressure ratio, density ratio, and Weber number, over wide ranges, we aim to comprehensively characterize their effects on the two-phaseflow regimes and breakup dynamics.more » « less
-
In the present work, we model and simulate the injection and atomization of a gasoline surrogate jet by detailed numerical simulation. The surrogate fuel has a low volatility and thus no phase change occurs in the process. The nozzle geometry and operation conditions are similar to the Engine Combustion Network (ECN) “Spray G”. We focus the present study on the near field where inter-jet interaction is of secondary importance. Therefore, we have considered only one of the eight jets in the original Spray G injectors. The liquid is injected from the inlet into a chamber with stagnant gas. A tangential component of velocity is introduced at the inlet to mimic the complex internal flow in the original spray G injector, which leads to the jet deflection. A parametric study on the inlet tangential velocity is carried out to identify the proper value to be used. Simulations are performed with the multiphase flow solver, Basilisk, on an adaptive mesh. The gas-liquid interface is captured by the volume-of-fluid method. The numerical results are compared to the X-ray experimental data for the jet deflection angle and the temporal variation of penetration length. The vortex dynamics in the near field are also presented by the assistance of the vortex-identification criterion.more » « less
An official website of the United States government

Full Text Available